Composing thoughts: mental handwriting produces brain activity that can be turned into text

The study, published in Nature, was funded by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies® (BRAIN) Initiative as well as the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute on Deafness and Other Communication Disorders (NIDCD), both part of the NIH.

Researchers focused on the part of the brain that is responsible for fine movement and recorded the signals generated when the participant attempted to write individual letters by hand. In doing so, the participant, who is paralyzed from the neck down following a spinal cord injury, trained a machine learning computer algorithm to identify neural patterns representing individual letters. While demonstrated as a proof of concept in one patient so far, this system appears to be more accurate and more efficient than existing communication BCIs and could help people with paralysis rapidly type without needing to use their hands. 

“This study represents an important milestone in the development of BCIs and machine learning technologies that are unraveling how the human brain controls processes as complex as communication,” said John Ngai, Ph.D., director of the NIH BRAIN Initiative. “This knowledge is providing a critical foundation for improving the lives of others with neurological injuries and disorders.”

When a person becomes paralyzed due to spinal cord injury, the part of the brain that controls movement still works. This means that, while the participant could not move his hand or arm to write, his brain still produced similar signals related to the intended movement. Similar BCI systems have been developed to restore motor function through devices like robotic arms.

“Just think about how much of your day is spent on a computer or communicating with another person,” said study co-author Krishna Shenoy, Ph.D., a Howard Hughes Medical Institute (HHMI) Investigator and the Hong Seh and Vivian W. M. Lim Professor at Stanford University. “Restoring the ability of people who have lost their independence to interact with computers and others is extremely important, and that is what is bringing projects like this one front and center.”  

Three public health interventions could prevent 94 million premature deaths

A worldwide effort to lower people’s blood pressure, cut their sodium intake, and eliminate trans fat from their diet could dramatically reduce the incidence of premature death from cardiovascular disease (CVD) over a quarter century, according to a new study led by Harvard T.H. Chan School of Public Health.

“Focusing our resources on the combination of these three interventions can have a huge potential impact on cardiovascular health through 2040,” said lead author Goodarz Danaei, associate professor of global health at Harvard Chan School.

The study was published online June 10, 2019 in the journal Circulation.

Researchers used global data from multiple studies and estimates from the World Health Organization in making their calculations.

They estimated that scaling up treatment of high blood pressure to 70% of the world’s population could extend the lives of 39.4 million people. Cutting sodium intake by 30% could stave off another 40 million deaths and could also help decrease high blood pressure, a major risk factor for CVD. And eliminating trans fatcould prevent 14.8 million early deaths.

More than half of all delayed deaths, and two-thirds of deaths delayed before age 70, are projected to be among men, who have the highest numbers of noncommunicable disease deaths globally, researchers found. Regions expected to benefit most from the interventions include East Asia, the Pacific, and South Asia, as well as countries in sub-Saharan Africa.

The authors said that a variety of programs and policies would be necessary to reduce premature CVD-related deaths. One important strategy would be to increase the use of blood pressure medications, many of which are safe and affordable.

The researchers acknowledged that scaling up the three interventions would be a “huge challenge,” requiring countries to commit additional resources to boost health care capacity and quality. But they added that previous analyses have shown that the interventions are achievable and affordable. For example, a Kaiser Permanente program in Northern California increased control of hypertension to 90% among thousands of the health system’s patients between 2001 and 2013, using strategies such as improved treatment protocols, patient-friendly services, and healthcare information systems that facilitate tracking people with hypertension. Similar approaches have been adapted and tested in some low- and middle-income countries, leading to notable improvements in hypertension treatment and control, the authors said.

“These are realistic goals that have been shown to be attainable on smaller scales,” said Danaei. “We need the commitment to scale up the programs to achieve them globally.”

“Three Public Health Interventions Could Save 94 Million Lives in 25 Years,” Vasilis Kontis, Laura K. Cobb, Colin D. Mathers, Thomas R. Frieden, Majid Ezzati, Goodarz Danaei, Circulation, June 10, 2019, doi: 10.1161/CIRCULATIONAHA.118.038160